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Abstract—Approximate integral-methods, similar to those used in the solution of the boundary layer
equations in fluid dynamics, are developed for determining the location and time history of the uni-
dimensional solid-liquid interface during the solidification of liquids initially at the fusion temperature.
For isothermal wall condition the configurations treated are the inward solidification of the semi-
infinite region, the circular cylinder and the sphere. Series solutions of the thermal equation giving the
location of the solid-liquid interface, for small time, are derived for the latter two shapes and are used
to estimate the accuracy of the approximate integral-methods. The approximate results for the circular
cylinder are also compared with an existing numerical solution obtained by the relaxation method.

NOMENCLATURE
a,  representative length;
¢,  specific heat;
k,  thermal diffusivity;
L, latent heat of fusion:
z, time;
T, temperature;
B, oI =Ty dimensionless group;
A, configuration parameter, i.e. A =0, 1 and

2 for the semi-infinite region, circular
cylinder and sphere respectively;
tk . .
7, -5, dimensionless time;
aZ

«,  thermal conductivity;
O, (T —Ty)[(Tr—T,), dimensionless tem-
perature;

©*, dimensionless energy thickness;

¢,  dimensionless length representing the depth
of solidification.

Subscripts

0, wall condition;
F,  solid-liquid interface condition.

1. INTRODUCTION
WHEN a liquid is undergoing a change of phase
from liquid to solid, thermal energy in the form
of the latent heat of fusion is released at a moving

solid-liquid interface whose location and time
history is unknown. Since the boundary condi-
tions at the solid-liquid interface are non-linear
in the temperature it may be expected that
analytical solutions will be difficult to obtain.
One of the few exact analytical solutions (see
Carslaw and Jaeger [1] is that found by Neumann
and Stefan relating to the solidification of the
semi-infinite region of liquid initially above or
at the fusion temperature when the surface wall
temperature is suddenly decreased to or main-
tained at a temperature below fusion. Further
work has been done on this configuration by
Evans et al. [2] who derived, using series expan-
sions, the position of the solidification front for
small time, when a given heat flux was prescribed
at the wall. When the wall temperature is ad-
justed so that there is a constant rate of solidifi-
cation, the boundary conditions at the solid-
liquid interface are then linear, and so analytical
solutions may be obtained. This type of problem
was first investigated by Stefan (see Ingersoll
et al. [3]) for the semi-infinite region and
by Kreith and Romie [4] for the inward solidifi-
cation of the circular cylinder and sphere
initially at the fusion temperature.

With regard to the non-linear problem in
which the position of the solidification front is
unknown, solutions may be obtained by
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numerical methods. Landau [5], using a finite
difference step-by-step procedure has presented
a set of solutions for the semi-infinite region
(see also Eyres et al. [6]); the convergence and
stability of this procedure has been investigated
by Douglas and Gallie [7]. Another approach
to the solution of the solidification problem
involving a plane front is given by Crank [8].
Here the numerical solution of the diffusion
equation with a moving boundary is replaced,
on making an appropriate change of variable,
by an equivalent eigenvalue type problem with
fixed boundaries. Finally in [9] and [10] Allen
and Severn have treated, using the method of
relaxation, the unidimensional problems of the
semi-infinite region and the cylinder respectively.
In the present paper approximate integral
methods, similar to those used in the solution of
boundary layer problems in fluid dynamics, are
developed and applied to problems involving
unidimensional solidification fronts.

2. THE MATHEMATICAL PROBLEM

In the following discussion the liquid is
assumed to satisfy the conditions: (i) the liquid
has a definite fusion temperature, (ii) initially
the liquid is at fusion temperature and (iii) atl
thermal properties of the material are uniform
and constant. Thus the temperature distribution
in the solidified phase is given by the thermal
diffusion equation

T
- Q2.1)

VT =

QW

At the solid-liquid interface T = Tr, where Tr
is the fusion temperature, and at the wall surface
T = T, < Tr. The initial conditions are 7' = Tr
at r = 0, and no solidification has occurred.

Consider now the boundary conditions associ-
ated with the unidimensional solidification of
the semi-infinite region, the cylinder and the
sphere. If E(¢) denotes the depth of penetration
of the front then for the semi-infinite region,
when ¢t > 0

T=Tyatx =0,T=Trand

er dE
ko = pL— atx = E,
ox

- (2.22)
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where x is measured in a normal inward direc-
tion from the plane surface: for the circular
cylinder or sphere, when 7 = 0

T=Tyatr =ua, T = Trand
oT B / dE
= by
where @ is the radius of the cylinder or the
sphere; also at t =0
E=0and T == Ty. (2.3)
On examination of the boundary conditions at
the solid-liquid interface it follows that the

latter two conditions of (2.2a) and (2.2b) are
equivalent to

atr =a — E.  (2.2b)

eT k [OT\?
= ﬁ_.;(,—) at x = E or
at pL \ox)
¢T k [eT\?
5"__EL(ETr) atr=a— £ (24)

respectively. Thus the equations (2.1) to (2.4)
are similar to the boundary layer equations in
fluid dynamics and E could be identified with
the boundary layer thickness. In both cases the
equations to be solved are parabolic and non-
linear.

Following the methods already developed for
obtaining exact solutions of the boundary layer
equations we shall now obtain a power series
representation for E(¢) about ¢+ = 0. We intro-

duce the dimensionless modulii and new
variables
E (T — T,)
€ ——5, @(7}. T) == (TF — TO)
L {(a —r) tk
T T r=—,. (2.5
B=Te=Ty" g adT =0 29
The basic equation (2.1) becomes
26 de 06 ]
o )
ZC) Ae c6
e T U
oT — €
7 > (2.6)

subject to the boundary conditions:
@ =0aty =0,0 =1and

o6 de
a;] ZBGE{TatU =1,
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In equation (2.6) A= 1 for the circular
cylinder, and A =2 for the sphere. The case
A =0 corresponds to the inward solidification
of a region bounded by the plane wall x = 0 and
a thermally insulated wall at x =a, where
(8T 0x),=, = 0. The solution of equations (2.6)
for A =0, where now x =(a —r) and r is
measured from the insulated wall, will then
apply for the period of solidification. The
complication of non-linearity is reduced by
expressing ¢ and @ as series in powers of ; i.e.

= Do~ > e @)
r=0 y==0

On substituting the series (2.7) into (2.6) and
equating coefficients of like powers of =, there
results a set of equations of which the first two
are:

fo 20y =0, fi(0) =0, 1
(=15 3)

2.8
A2 -2 = 522(’\50 — 3adfy, &9

fO=£(3) =0.r(3) e

Here the primes denote differentiation with
respect to the new variable { = }¢y,. Using the
two point boundary conditions on f({) the
equations (2.8) may be solved exactly. The
gradient condition on f,({) then determines the
unknown constants ¢,. The method of solution
is not given here as this has already been de-
scribed by Goldstein and Rosenhead [11]. The
first three coefficients ¢y, ¢, and ¢, may be found
from the following relations:

Beg et J.

€ol2 Ael
_t2 _ 0
ePdt =1, ¢=: -
0 6+ €

— €

L., 21+ Be
B{ 3+ € T 2(1__+—B) Eg}

and €y ==

_E@A2 + X — $Aq + %—e‘;’)}

1+ps . ,
- z—mg{“z + )

© B[4 4 &) + XA - 2)1}] 2.9)

Further coefficients e, may be evaluated but
are tedious to obtain if r > 2. Needless to say
the series (2.7) have limited usefulness and more-
over the radius of convergence would be difficult
to obtain. The same difficulty exists in the
Blasius-type expansions of the boundary layer
equations* (see Goldstein [12]) and for this
reason it is desirable to obtain information on
the solidification process by using the approxi-
mate integral-methods of boundary layer theory.

3. APPROXIMATE ANALYSIS FOR THE
TREATMENT OF UNIDIMENSIONAL
SOLIDIFICATION FRONTS

Following the approximate methods used in
boundary layer theory we shall abandon the
attempt to satisfy the heat conduction equation
at every point and time and instead assume a
temperature profile which is made to satisfy
certain integrated forms of the heat conduction
equation for the solidified phase. For conveni-
ence we introduce the dimensionless modulii

E T —T)
e—as @(Xs 7)—'(715?77),
B— L ﬁrk,
TTr =Ty T & 3.1
X:gfor/\:OandX:(q;r)for/\:lorZ.

Equations (2.1) to (2.4) now become

0 o0 o0
00, 7) =0, Oe 1) =1, (3.2b)
de
Ox (. 7) = B 5. (3.20)

* Note that the inward solidification of the cylinder is
analogous to the development of the laminar boundary
layer in the inlet length of a circular pipe (see Goldstein
and Atkinson [12]).
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!
B
€0 =0, (3.2

where the suffixes denote first order partial
differentiation. The heat balance integral for the
solidified phase is obtained by integrating both
sides of equation (3.2a) from X =0 to X = «
and applying the boundary condition (3.2c).
The result is

de ¥7.C)
Y R
B — oy, (ax) .

Ox (e, 2= — 50,(c, 7), (3.2d)

and O(X, 0 =1,

¢ o0
. . AT
= j.” (1 —X) 4 dXx. (3.3)
In a similar fashion by multiplying both sides
of equation (3.2a) by (1 — X)* (66/éX) dX,
integrating from X = 0 to X = ¢ and applying
the boundary condition (3.2d), we obtain

()

S X=0

o6 06 dx
oXor

— ZJ (1 — Xx) (3.4)
[

Equation (3.4) has less physical significance

than equation (3.3), but may be used in con-

junction with (3.3) to obtain approximate

information for . Two different approximations

are developed.

I—The Kdrmdn—Pohlhausen method
We assume the simple one-parameter tem-
perature profile
=2,
€
which satisfies the conditions (3.2b). The
unknown parameter, i.e. the dimensionless
thickness of solidified material (), is then
obtained on direct substitution of (3.5) into the
heat balance integral (3.3). The solutions are:
for the semi-infinite region, A = 0,

(3.5)

\ 2
coiep e = () 69
0;
for the circular cylinder, A =1,
=28+ e — 338+ Ve (3T)
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and for the sphere, A == 2,
=28+ e

—5GB+ 1€+ & @8+ et (3.8)

This method is that originally due to Karman
and Pohlhausen (see Goldstein [12]) for solving
the momentum integral equation of fluid
dynamics. The Karmén-Pohlhausen technique
has been applied by Goodman [13] to investi-
gate the unidimensional solidification of the
semi-infinite region. Here a one-parameter
quadratic profile was chosen to satisfy the
conditions (3.2b) and the non-linear boundary
condition (3.2d). Unfortunately this method
appears to fail when applied to the circular
cylinder and the sphere. Thus the second method
to be used in this paper is based on a modifica-
tion of the Kdrmdn-Pohlhausen technique due
to Tani [14].

II—The Tani method

The essential idea of the application of the
Tani method to problems involving unidimen-
sional fronts is to assume a simple two-
parameter quadratic profile which satisfies the
conditions (3.2b), i.e.

X X X
(~):-—:—;+g( 2-)-

€ €

(3.9)

The two unknown parameters e(r) and g(r) are
then obtained on solving the pair of first~order
equations derived on substitution of (3.9) into
the integral equations (3.3) and (3.4). The initial
conditions are:

€(0) = 0 and lim g = 0.

>0

(3.10)

The latter condition is derived from considera-
tion of the total thermal energy of the solidified
phase. This is related to the energy thickness
O%(e, N) = fo(1 — XROdX. (3.11)
and on using expression (3.9) the above condi-
tion on g must be satisfied since @*(0, ) = 0.
Consider first the semi-infinite region. The
resulting equations for «(+) and g(7) are:
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T=—3%¢€log(l +g)

J {% log (1 + g) + (—’i(lii—)i@}e de (3.12)

and

(1—peSE=30-20 +p) + 7,

lim ¢g = 0. (3.13)
e—0
Equation (3.13) is satisfied identically by
g=280)=1+28—-2//(B+5), (314

a constant. The equation for +(¢) can be inte-
grated exactly giving

683 —50) , (e}
T T ) () (3-13)

where on using (3.14)

L 120+ 8— VE+ Y
T IFBEAVEE

The determination of 7(¢) and g(e) in the case
of the circular cylinder (A = 1) or the sphere
(A = 2) is a little more complicated since for
these configurations g is no longer constant.
Equations will only be given for the circular
cylinder, namely

(3.16)

r=—% 22— olog(l +g)

o js{m —39log(l +2)
126 +6 — (128 +4)e +2(e — 1)g

+ (1 +g) «de
(3.18)
and
{(10 — 15¢ 4 6€*) — (10 — 9e + 2&¥)g}

X %‘%: {30 — 60(1 + B)e + 30(1 + B)<?}

— g{60(1 + 28) — 90(1 + 2B)e

4+ 1203 + 58)€?} + g2{30 — 42¢ + 14e2),
lim g = 0. (3.19)

>0

Equation (3.19) cannot be integrated exactly
but may be quickly solved numerically by the
method of Fox and Goodwin [15] for the range
0 < e << 1. The required initial values to be
used in this method are:

g(0) =1+ 28 — 24/(B + B? and g'(0) =
30(1 + B) — 45(1 + 2B)g(0) + 21g2(0)}
{ 35 — 35g(0) + 608

(3.19a)

These have been obtained using a series expan-
sion for g(e) at the origin, ¢ = 0. Once g has
been obtained 7(¢) may be found from expres-
sion (3.18) by direct numerical integration. We
note from expression (3.18) that g > — 1 for
0 < e < 1 otherwise the approximate method
would fail.

4. RESULTS AND DISCUSSION

Results are given graphically in Fig. 1 for the
semi-infinite region. The constant ¢, as evaluated
from the approximate expressions (3.6) and
(3.16) is compared with the exact coefficient
evaluated from the transcendental equation in
(2.9). It is seen that the Karman-Pohlhausen

100
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Fi1G. 1. Curves for obtaining the depth of solidification

of a semi-infinite region: I—Karman-Pohlhausen

method, II—Tani method and III—the exact
solution.
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one-parameter method is sufficient for all
practical purposes if 8 ™~ 1. whilst the Tani
two-parameter method is satisfactory for
B 2 1/10. Note that as 8 ~ =. i.e. the heat
capacity of the material becomes vanishingly
small, then both approximations give the correct
asymptotic form e, \(2/8). It is interesting
to compare the numerical magnitude of «,. for
a particular value of B. found using the above
approximations with that given by Goodman
[13] and that obtained by Allen and Severn [9]
using the relaxation method. Taking 3 1-5613,
as in [8]. the exact result is ¢,  1-034: Allen
and Severn give ¢,  1-035: the methods of the
present paper give €, - 0985 and ¢, 1049
for the Karman-Pohlhausen and Tani methods
respectively; the Goodman procedure using a
one-parameter Karman-Pohlhausen method and
assuming a quadratic profile satisfying the
boundary conditions (3.2b) and (3.2d) gives
- 1-089,,.
In Fig. 2 the result obtained by Allen and
Severn [10] for the inward sohlidification of the
circular cylinder is reproduced (8 1-5613).
The agreement between their result and that

€0

FiG. 2. Depth of solidification and time history for

the circular cylinder, when g = 1-5613: I—K4rman -

Pohlhausen method, II—Tani method and I1I—Allen
and Severn [10].

é
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obtained by the approximate methods of section 3
i1s seen to be satisfactory. In particular the
non-dimensional time for complete solidifica-
tion is = = 0-40 and = - 0-52 for methods I
and II respectively as compared with the result
of the relaxation solution. = 0-47. Morcover
for small depths of solidification methods I and
IT predict nearly identical solidification rates
which are in good agreement with the exact
values obtained from expressions (2.7) and (2.9).
For example in the case of the circular cylinder
the exact result for small time is

€ 103471 2 -+ 0-151+ - 0-083+32 - ... .(4.1)
and that obtained by method IT is
e 1-049+1 2 . 0:1687 4 0-0737% 2 - ... (4.2)

Similar trends were established in the case of
the inward solidification of the sphere. For
B 1:5613, the exact result for small time is

e 1:034r12 .. 03027 + 0-19873 2 .- ... (4.3)

and that obtained by method I is
€ = 104971 2 -} 0-3367 - 0-160-3% = ... (44)

The complete results for methods 1 and I are
displayed in Fig. 3. Note that the points indicated
on the curves in Figs. 2 and 3 have been derived
using the expansions (4.1) and (4.3) respectively.

34 o6 0-8 0
F1G. 3. Depth of solidification and time history for
thesphere, when 8 - 1-5613: I—Ka&rman-Pohlhauscn

method and [1—Tani method.
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Résumé—L’auteur étudie des méthodes intégrales approchées, semblables a celles utilisées pour
résoudre les équations de la couche limite en dynamique des fluides, pour déterminer la position et
I’évolution dans le temps de la surface de séparation unidimensionnelle solideliquide, au cours de la
solidification de liquides initialement & la température de fusion. Dans le cas d’une paroi isotherme, les
configurations étudiées sont la solidification 4 I'intérieur d’'une région semi-infinie, d’'un cylindre
circulaire et d’une sphere. Pour ces deux derniéres formes, I'auteur a trouvé des solutions (séries) de
I’équation de la chaleur qui donnent la position de I'interface solide-liquide pour un temps bref, et
qui permettent d'évaluer la précision des méthodes intégrales approchées. Les résultats pour le
cylindre circulaire sont également comparés & une solution numérique obtenue par la méthode de
relaxation.

Zusammenfassung—Die Orts- und Zeitabhéngigkeit der eindimensionalen Verfestigungsfront in
einer Fliissigkeit von Schmelztemperatur kann nach angeniherten Integralmethoden bestimmt werden.
Dieses Verfahren gleicht dem der Hydrodynamik fiir die Losung von Grenzschichtgleichungen.
Fiir den halbunendlichen Bereich, den Zylinder und die Kugel wurde die ins Innere fortschreitende
Verfestigung bei isothermen Wandbedingungen untersucht. Die Ortsabhingigkeit der Verfestigungs-
front bei kleinen Zeiten, ldsst sich fiir die beiden letzteren Formen in Reihenlésungen angeben. Diese
dienten auch zur Abschéitzung der Genauigkeit der angeniherten Integralmethoden. Dariiber hinaus
wurden die Ergebnisse fiir den Zylinder noch mit einer numerischen I.6sung nach Relaxationsmethode
verglichen.

Annorauua—IIpudaumsenyyle  MHTErPAIbHLIE  METOABL, TOJIO0HLIE HCHONBLBYEMHIM B
TUAPOAUHAMUKE 71 PeIeHNs ypaBHeHUH MMOrPAHUYHOIO CJOS, PA3BUTHL JJIA OTPefele s
HBMEHeHMA MEeCTONOIOKEHNs OHOMEDHOM TOBePXHOCTH pasgesa TBEPHOH M UKol $ase
TIpIT 3aTBEPAEBAHMI AHHIAKOCTEN, HAXONANIMXCA BHAYATE HPH TEMIEPATYpPe TIABIEHUA. [Ipn
YCIOBMAX HBOTEPMUYHOCTH HA TPaHMIle DPaccMaTpUBAETCA BHYTPEHHeE 3aTBepleBaHIe
oIy GecKOHEUHON 007aCTH, KPYTIOre UANHApPA 1 mwapa. J[as nocaequux JBYX KoHGUrypa-
il mosTyyeH PAR peileHUN yPABHEHVA TEMIONPOBOIHOCTH, KOTOPHE TMO3BOJIAKT IIA MAIbIX
BPEMEH MOJIY4YUTH MOJ0MEHNe IIOBEPXHOCTH pasiela TBePLOlt u UKol hassl. DTH pelleHus
HCTOTB30BAHEL ANA OLEHKM TOYHOCTH TPUOIMKEHHHX MHTErDAIBHHIX MeETOMoB. Jlaércs
CpaBHeHHe NPHOIIKeHHBIX PesyIbTATOB [IH KPVIVIOTO IIIMHAPA € UMEIOTIIHMCH YHCIeHIBIM
PelleHNeM, HOJYUeHHEIM MEeTOO0N PelaKCallui.
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