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Abstract-Approximate integral-methods, similar to those used in the solution of the boundary layer 
equations in fluid dynamics, are developed for determining the location and time history of the uni- 
dimensional solid-liquid interface during the solidification of liquids initially at the fusion temperature. 
For isothermal wall condition the configurations treated are the inward solidification of the semi- 
infinite region, the circular cylinder and the sphere. Series solutions of the thermal equation giving the 
location of the solid-liquid interface, for small time, are derived for the latter two shapes and are used 
to estimate the accuracy of the approximate integral-methods. The approximate results for the circular 
cylinder are also compared with an existing numerical solution obtained by the relaxation method. 

NOMENCLATURE 

representative length; 
specific heat ; 
thermal diffusivity ; 
latent heat of fusion ; 
time; 
temperature ; 

L 
___ dimensionless group; 
CWF - Tn)’ 

configuration parameter, i.e. X = 0, 1 and 
2 for the semi-infinite region, circular 
cylinder and sphere respectively; 
tk 
az, dimensionless time; 

thermal conductivity; 
(T - TJ/(TF - T,,), dimensionless tem- 
perature ; 
dimensionless energy thickness; 
dimensionless length representing the depth 
of solidification. 

Subscripts 
0, wall condition; 
I;, solid-liquid interface condition. 

1. INTRODUCTION 

WHEN a liquid is undergoing a change of phase 
from liquid to solid, thermal energy in the form 
of the latent heat of fusion is released at a moving 

solid-liquid interface whose location and time 
history is unknown. Since the boundary condi- 
tions at the solid-liquid interface are non-linear 
in the temperature it may be expected that 
analytical solutions will be difficult to obtain. 
One of the few exact analytical solutions (see 
Carslaw and Jaeger [l] is that found by Neumann 
and Stefan relating to the solidification of the 
semi-infinite region of liquid initially above or 
at the fusion temperature when the surface wall 
temperature is suddenly decreased to or main- 
tained at a temperature below fusion. Further 
work has been done on this configuration by 
Evans et al. [2] who derived, using series expan- 
sions, the position of the solidification front for 
small time, when a given heat flux was prescribed 
at the wall. When the wall temperature is ad- 
justed so that there is a constant rate of solidifi- 
cation, the boundary conditions at the solid- 
liquid interface are then linear, and so analytical 
solutions may be obtained. This type of problem 
was first investigated by Stefan (see Ingersoll 
et al. [3]) for the semi-infinite region and 
by Kreith and Romie [4] for the inward solidifi- 
cation of the circular cylinder and sphere 
initially at the fusion temperature. 

With regard to the non-linear problem in 
which the position of the solidification front is 
unknown, solutions may be obtained by 

525 



526 G. POOTS 

numerical methods. Landau [5], using a finite 
difference step-by-step procedure has presented 
a set of solutions for the semi-infinite region 
(see also Eyres et al. [6]); the convergence and 
stability of this procedure has been investigated 
by Douglas and Gallie [7]. Another approach 
to the solution of the solidification problem 
involving a plane front is given by Crank [8]. 
Here the numerical solution of the diffusion 
equation with a moving boundary is replaced, 
on making an appropriate change of variable, 
by an equivalent eigenvalue type problem with 
fixed boundaries. Finally in [9] and [lo] Allen 
and Severn have treated, using the method of 
relaxation, the unidimensional problems of the 
semi-infinite region and the cylinder respectively. 

In the present paper approximate integral 
methods, similar to those used in the solution of 
boundary layer problems in fluid dynamics, are 
developed and applied to problems involving 
unidimensional solidification fronts. 

2. THE MATHEMATICAL PROBLEM 

In the following discussion the liquid is 
assumed to satisfy the conditions: (i) the liquid 
has a definite fusion temperature, (ii) initially 
the liquid is at fusion temperature and (iii) all 
thermal properties of the material are uniform 
and constant. Thus the temperature distribution 
in the solidified phase is given by the thermal 
diffusion equation 

(2.1) 

At the solid-liquid interface T = TF, where TF 
is the fusion temperature, and at the wall surface 
T = To < TF. The initial conditions are T = TF 
at t = 0, and no solidification has occurred. 

Consider now the boundary conditions associ- 
ated with the unidimensional solidification of 
the semi-infinite region, the cylinder and the 
sphere. If E(t) denotes the depth of penetration 
of the front then for the semi-infinite region, 
when t > 0 

T =: To at x = 0, T = TF and 

i-T dE 
K gk = pL dt at x = E, (2.2a) 

where x is measured in a normal inward direc- 
tion from the plane surface: for the circular 
cylinder or sphere, when t “,, 0 

T = To at I’ =:: N, T = Tp and 

dT dE K ark .T --- pL - at ,’ z (, ~ E. 
dt 

(2.2b) 

where a is the radius of the cylinder or the 
sphere ; also at t = 0 

E = 0 and T TF. (2.3) 
On examination of the boundary conditions at 
the solid-liquid interface it follows that the 
latter two conditions of (2.2a) and (2.2b) are 
equivalent to 

at s = E or 

at I’ = N - E (2.4) 

respectively. Thus the equations (2.1) to (2.4) 
are similar to the boundary layer equations in 
fluid dynamics and E could be identified with 
the boundary layer thickness. In both cases the 
equations to be solved are parabolic and non- 
linear. 

Following the methods already developed for 
obtaining exact solutions of the boundary layer 
equations we shall now obtain a power series 
representation for E(t) about t = 0. We intro- 
duce the dimensionless modulii 
variables 

fl = __L__. 
C(TF - To)' 

77 :: (fl_?) and 7 
OE 

The basic equation (2.1) becomes 

50 x E 20 
- 3 ~_ _ 

is- (1 - ‘7) 3 

subject to the boundary conditions : 

0 = 0 at 7 = 0,O = 1 and 

and new 
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In equation (2.6) X = 1 for the circular 
cylinder, and h = 2 for the sphere. The case 
h = 0 corresponds to the inward solidification 
of a region bounded by the plane wall x = 0 and 
a thermally insulated wall at x = a, where 
(W/ax),=, = 0. The solution of equations (2.6) 
for h = 0, where now x = (a - r) and r is 
measured from the insulated wall, will then 
apply for the period of solidification. The 
complication of non-linearity is reduced by 
expressing E and 0 as series in powers of 7; i.e. 

m ‘w 

f= 
c 

ET $ 2 (IV), @ = 

c 
.fxw. (2.7) 

r=O r-0 

On substituting the series (2.7) into (2.6) and 
equating coefficients of like powers of 7, there 
results a set of equations of which the first two 
are : 

fo" + Xf,' = 0, fo(0) = 0, 

Here the primes denote differentiation with 
respect to the new variable 1 = 3~~7. Using the 
two point boundary conditions on f,(g the 
equations (2.8) may be solved exactly. The 
gradient condition on fr(5) then determines the 
unknown constants E,.. The method of solution 
is not given here as this has already been de- 
scribed by Goldstein and Rosenhead [ll]. The 
first three coefficients E,,, E~ and Ed may be found 
from the following relations: 

+ +/3 [ EY(4 + 6;) + +4( h + 2)] 
11 

(2.9) 

Further coefficients cl. may be evaluated but 
are tedious to obtain if r > 2. Needless to say 
the series (2.7) have limited usefulness and more- 
over the radius of convergence would be difficult 
to obtain. The same difficulty exists in the 
Blasius-type expansions of the boundary layer 
equations* (see Goldstein [12]) and for this 
reason it is desirable to obtain information on 
the solidification process by using the approxi- 
mate integral-methods of boundary layer theory. 

3. APPROXIMATE ANALYSIS FOR THE 
TREATMENT OF UNIDIMENSIONAL 

SOLIDIFICATION FRONTS 

Following the approximate methods used in 
boundary layer theory we shall abandon the 
attempt to satisfy the heat conduction equation 
at every point and time and instead assume a 
temperature profile which is made to satisfy 
certain integrated forms of the heat conduction 
equation for the solidified phase. For conveni- 
ence we introduce the dimensionless modulii 

X=XforX=OandX-“-I’)forX_1or2. 
a 0 

Equations (2.1) to (2.4) now become 

a4 ((1 - xy fg) = (1 - X)h !?, (3.2a) 

O(0, T) = 0, O( l , T) = 1. (3.2b) 

(3.2~) 

* Note that the inward solidification of the cylinder is 
analogous to the development of the laminar boundary 
layer in the inlet length of a circular pipe (see Goldstein 
and Atkinson [ 121). 
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(Ox (E, T)}” = - ; O,(E, T), (3.2d) 

and 0(X, 0) = 1, E(0) = 0, (3.2e) 

where the suffixes denote first order partial 
differentiation. The heat balance integral for the 
solidified phase is obtained by integrating both 
sides of equation (3.2a) from X y 0 to X = E 
and applying the boundary condition (3.2~). 
The result is 

= 
s 

‘(I - .Y)$;dX. (3.3) 
I, 

In a similar fashion by multiplying both sides 
of equation (3.2a) by (1 - X)A (N/8X) dX, 
integrating from X = 0 to X = E and applying 
the boundary condition (3.2d), we obtain 

/3(1 - t)Zh 

- 2 
s 

‘(1 - X)*A g;;dX. (3.4) 
0 

Equation (3.4) has less physical significance 
than equation (3.3), but may be used in con- 
junction with (3.3) to obtain approximate 
information for E. Two different approximations 
are developed. 

T-The Ka’rmcin-Pohlhausen method 
We assume the simple one-parameter tem- 

perature profile 

@-x 
E’ (3.5) 

which satisfies the conditions (3.2b). The 
unknown parameter, i.e. the dimensionless 
thickness of solidified material E(T), is then 
obtained on direct substitution of (3.5) into the 
heat balance integral (3.3). The solutions are: 
for the semi-infinite region, h = 0, 

for the circular cylinder, h = 1, 

7 == )(2/I + l)? - 8(3/3 + 1)S; (3.7) 

and for the sphere, X -= 2, 

7 = 4(2/3 $ l)E2 

- $ (38 + l)EfS $ & (413 + 1 )t”. (3.8) 

This method is that originally due to Karmin 
and Pohlhausen (see Goldstein [12]) for solving 
the momentum integral equation of fluid 
dynamics. The K&-man-Pohlhausen technique 
has been applied by Goodman [13] to investi- 
gate the unidimensional solidification of the 
semi-infinite region. Here a one-parameter 
quadratic profile was chosen to satisfy the 
conditions (3.2b) and the non-linear boundary 
condition (3.2d). Unfortunately this method 
appears to fail when applied to the circular 
cylinder and the sphere. Thus the second method 
to be used in this paper is based on a modifica- 
tion of the Karman-Pohlhausen technique due 
to Tani [14]. 

II-The Tani method 
The essential idea of the application of the 

Tani method to problems involving unidimen- 
sional fronts is to assume a simple two- 
parameter quadratic profile which satisfies the 
conditions (3.2b), i.e. 

The two unknown parameters C(T) and g(T) are 
then obtained on solving the pair of first-order 
equations derived on substitution of (3.9) into 
the integral equations (3.3) and (3.4). The initial 
conditions are : 

~(0) = 0 and lim l g = 0. 
c-+0 

(3.10) 

The latter condition is derived from considera- 
tion of the total thermal energy of the solidified 
phase. This is related to the energy thickness 

O*(E, A) = J; (1 - X)x 0 dX. (3.11) 

and on using expression (3.9) the above condi- 
tion on g must be satisfied since O*(O, A) = 0. 

Consider first the semi-infinite region The 
resulting equations for C(T) and g(T) are: 
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(3.12) 

and 

(1 -g)$= 3 (1 -2(l +B)g+!?), 

lim <g = 0. (3.13) 
t-+0 

Equation (3.13) is satisfied identically by 

g = g(0) = 1 + 28 - %43 + P2>, (3.14) 

a constant. The equation for T(C) can be inte- 
grated exactly giving 

68 + 3 - g(0) E 2 

7 = 12{1 +g(o)) E2 = < ’ 0 
(3.15) 

where on using (3.14) 

The determination of T( l ) and g(c) in the case 
of the circular cylinder (A = 1) or the sphere 
(A = 2) is a little more complicated since for 
these configurations g is no longer constant. 
Equations will only be given for the circular 
cylinder, namely 

7 = - $2 l 2 (2 - l ) log (1 + g) 

( T 2% : JI (4 - 34logO +g> 
+ 12p $6 - (&I + 4)~ + 2(~ - 1)g 

(1 + g) > 
E dc, 

(3.18) 

and 

{(IO - 15~ + 6~~) - (10 - 9~ + 2E2)g) 

x l g= (30 - 60(1 +@s), + 30(1 +/3)c2} 

- g{60(1 + 28) - 90(1 + 26) 6 
+ 12(3 + 5/3)e2) +g2{30 - 42~ + 14<2}, 

lim cg = 0. (3.19) 
c-0 

Equation (3.19) cannot be integrated exactly 
but may be quickly solved numerically by the 
method of Fox and Goodwin [15] for the range 
0 < E < 1. The required initial values to be 
used in this method are: 

g(0) = 1 + 28 - 22/(/3 + B2) and g’(0) = 

-1 

30(1 + B) - 45(1 + 2/%(O) + 21g2(0) 
--T - 35g(O) + 60/3 -- ’ li 

(3.19a) 

These have been obtained using a series expan- 
sion for g(E) at the origin, E = 0. Once g has 
been obtained T(C) may be found from expres- 
sion (3.18) by direct numerical integration. We 
note from expression (3.18) that g > - 1 for 
0 < E ,< 1 otherwise the approximate method 
would fail. 

4. RESULTS AND DISCUSSION 

Results are given graphically in Fig. 1 for the 
semi-infinite region. The constant E,, as evaluated 
from the approximate expressions (3.6) and 
(3.16) is compared with the exact coefficient 
evaluated from the transcendental equation in 
(2.9). It is seen that the KArmBn-Pohlhausen 
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FIG. 1. Curves for obtaining the depth of solidification 
of a semi-infinite region: I-K&m&n-Pohlhausen 
method, II-Tani method and II-the exact 

solution. 
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one-parameter method is sufficient for all obtained by the approximate methodsof section 3 
practical purposes if fi ‘, I. whilst the Tani is seen to be satisfactory. In particular the 
two-parameter method is satisfactory for non-dimensional time for complete solidifica- 
/3 :;: 11’10. Note that as p .k CT. i.e. the heat tion is T : 0.40 and T : 0.52 for methods J 
capacity of the material becomes vanishingly 
small, then both approximations give the correct 
asymptotic form c,, \ (2/p). It is interesting 
to compare the numerical magnitude of co. fol 
a particular value of 8. found using the above 
approximations with that given by Goodman 
[ 131 and that obtained by Allen and Severn [9] 
using the relaxation method. Taking fi 1.5613. 
as in [8]. the exact result is 6,) I .034 : Allen 
and Severn give f,, 1.03,: the methods of the 
present paper give l ,, 0.985 and E,, I .049 
for the Kirmlin Pohlhausen and Tani methods 
respectively; the Goodman procedure using a 
one-parameter KitmAn-Pohlhausen method and 
assuming a quadratic profile satisfying the 
boundary conditions (3.2b) and (3.2d) gives 

En 1.089,. 
In Fig. 2 the result obtained by Allen and 

Severn [lo] for the inward solidification of the 
circular cylinder is reproduced (fi 1.5613). 
The agreement between their result and that 

and II respectively as compared with the result 
of the relaxation solution. 7 0.47. Moreover 
for small depths of solidification methods 1 and 
Jl predict nearly identical solidification rates 
which are in good agreement with the exact 
values obtained from expressions (2.7) and (2.9). 
For example in the case of the circular cylinder 
the exact result for small time is 

c 1.0347’ 2 .iO.l5lT . 0.083i” -. ..(4.l) 

and that obtained by method II is 

C 1.049~’ ” . 0.168~ f- 0.073~” 2 .i- . .(4.2) 

Similar trends were established in the case of 
the inward solidification of the sphere. For 
,!I 1.5613. the exact result for small time is 

l l.O34$ :! . 0.302~ + 0.1987” ‘?. -!.- .(4.3) 

and that obtained by method II is 

on the curves in Figs. 2 and 3 have been derived 
using the expansions (4. I) and (4.3) respectively. 

FIG. 2. Depth of solidification and time history for 
the circular cylinder, when /3 = I.5613 : I-K&rmin 
Pohlhausen method. II-Tani method and III-Allen 

and Severn [IO]. 

FIG. 2. Depth of solidification and time history for 
thespherc.when/3 -- 1.5613: I-K&&n-Pohlhauscn 

method and II-Tani method. 
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R&u&-L’auteur ttudie des m&hodes intCgrales approchCes, semblables g celles utilisees pour 
resoudre les Cquations de la couche limite en dynamique des fluides, pour determiner la position et 
I’Cvolution dans le temps de la surface de sCparation unidimensionnelle solide-liquide, au tours de la 
solidification de liquides initialement g la tempkrature de fusion. Dans le cas d’une paroi isotherme, les 
configurations etudiees sont la solidification B l’interieur d’une rkgion semi-infinie, d’un cylindre 
circulaire et d’une sphere. Pour ces deux dernitres formes, l’auteur a trouvC des solutions (s&ies) de 
l’equation de la chaleur qui donnent la position de l’interface solide-liquide pour un temps bref, et 
qui permettent d’Cvaluer la pr6cision des methodes inttgrales approchCes. Les resultats pour le 
cylindre circulaire sont Cgalement cornpar& & une solution numerique obtenue par la mtthode de 

relaxation. 

Zusammenfassung-Die Orts- und Zeitabhtingigkeit der eindimensionalen Verfestigungsfront in 
einer.Fliissigkeit von Schmelztemperatur kann nach angenlherten Integralmethoden bestimmt werden. 
Dieses Verfahren gleicht dem der Hydrodynamik fiir die Liisung von Grenzschichtgleichungen. 
Fiir den halbunendlichen Bereich, den Zylinder und die Kugel wurde die ins Innere fortschreitende 
Verfestigung bei isothermen Wandbedingungen untersucht. Die Ortsabhlngigkeit der Verfestigungs- 
front bei kleinen Zeiten, llsst sich Wr die beiden letzteren Formen in Reihenlbsunnen aneeben. Diese 
dienten such zur Abschitzung der Genauigkeit der angenlherten Integralmethod& Da%& hinaus 
wurden die Ergebnisse fiir den Zylinder noch mit einer numerischen 1.8sung nach Relaxationsmethode 

verglichen. 

BHBOTarrM~-npnGTILrXEeHHbIe I~HTWp&-IbHbIe MeTOAbI, IIO~O6HLR INXIOJIb8yeivlbIM B 

rHHpOJ@lHaMHKe JJJR peIUeHHFl ypaBHeHLld nOrpaHWIHOr0 CJIOR, pa3BIITbI AJIrl OnpeJ&eJIeHHFI 

113MeHeHHFI MeCTOnOJIO?KeHHH OAHOMepHOt nOBepXHOCTM pa3JJeJIa TBepr[Oti II IfEIIfiKOti @a3bI 

nprr 3aTsepAesaHMM ~~AKocTeft,Haxo~~llImxc~ mrasane npn TeMnepaType nJraRJIemiFr. IIpll 
yCSOBHFIX M30TepMHYHOCTI4 Ira rpaHkiqe pacmaTpmBaeTcfI BHyTpemee 3aTBepneBaHme 

nony6ecKoHesHo~~ o6nacTI%, Kpymqro qmnanpa H mapa. am nocne~anx a~yx KoH$nrypa- 

I@ nO.TIyYeH PRjl peIUeH& ypaBHeHIlR Ten.7IOnpOBO~HOCTI4,KOTOpbIe nO3BOJIfIIOT AJIfI MaJIbIX 

BpeMeH nOJIyWiTb nOJIo?KeHIle nOBepXHOCTM pa3zeJI.a TBepAOti 14 WlAKOt (Ia3bI.3TH PemeHHH 

HCnOZb30BaHbI $ItI OIfeHKH TOYHOCTM npI46WKeHHbIX HHTerpaJIbHbIX MeTOHOB. AaeTcH 

CpaBHeHHe npI46JIII?KeHHbIX pe3yJfbTaTOB JJJIa Kp~rJIOrO qHZI?MH~pa C IIMeIOI!JII#CH YIICJIeHIIbIM 

pemeabrem, nO.qKleHHbI\I >teTo;[oIr penaIicaqm4. 
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